AWSIM v2.1.5.1 and ACI 2.1.1

Version Description Document

For

The Air Force Suite of Models (AFSOM)

AWSIM v2.1.5.1

ACI 2.1.1

Rev A

Electronic Systems Center

[image: image1.wmf]
Modeling, Simulation and Training PAD

DIS
8 December 1998
Table of Contents

AWSIM 2.1 Version Description Document

51
AFAMS DRs/CRs

1.1
AWSIM
5
1.2
ACI
5
2
AWSIM Recovery Procedure Changes
6
3
AWSIM Operational Changes Quick Reference
7
4
AWSIM System Setup Changes
8
4.1
DIS I/F Related Adaptation changes
8
4.2
Installation – modIOS
8
5
AWSIM User Interface Changes
11
6
AWSIM Database Schema Changes
13
6.1
No changes
13
7
AWSIM CTAPS Interface (ACI)
14
7.1
System Overview
14
7.2
Software Enhancements
15
7.3
Possible problems and known errors:
16
7.4
Interface Compatibility
16
8
Notes
17
8.1
“.ncrc” file
17
8.2
DIS Monitor Help
18
9
DETAILED VERSION DESCRIPTION
22
9.1
AFAMS DRs/CRs
22
10
Development Changes Related to DIS Interface
23

1 AFAMS DRs/CRs

1.1 AWSIM
3897
BTS #98078-14 SCUD TBM/Cruise

See Section 10 for additional changes.

1.2 ACI

None

2 AWSIM Recovery Procedure Changes

To recover the AWSIM-DIS interface, kill the DIS processes via the “DIS Menu” and restart it. See section 5 for detail.

3 AWSIM Operational Changes Quick Reference

No operational procedure change to run AWSIM under the ALSP only environment. Sections 4 and 5 detail the procedure changes to run AWSIM in a mixed ALSP and DIS environment.

4 AWSIM System Setup Changes

4.1 DIS I/F Related Adaptation changes

Five new adaptation variables should be set to “True” when running with J-QUAD+ DIS ground model. Below is the description of each variable:

ALSP_Update_Ghost_Site_Emitters

Flag used by EI to determine whether or not to send Emitter updates out via ALSP for ghost sites. This should be set to True when running the ground model is J-QUAD+, but to False when the ground model is CBS.

DIS_Send_ALSP_Ghost_Site_to_DIS

Send ALSP ghost sites to DIS as if AWSIM owned. This allows AWSIM to shoot down DIS ghost objects from sites ghosted via the ALSP, as is the case when running with the J-QUAD+.

DIS_Send_AC_to_ALSP

Send DIS ghost aircraft to ALSP. This allows J-QUAD+ to see DIS air objects and air-to-surface engagements from them so that it can do damage and generate misreps for these engagements.

DIS_Send_Missiles_to_ALSP

Send DIS ghost missiles to ALSP. This allows J-QUAD+ to see DIS missiles and corresponding engagements from them so that it can do damage and generate misreps for these engagements.

ALSP_Get_Fire_Control_Auto

Obtain fire_control automatically for J-QUAD+ configuration, since AWSIM always has fire control of the ALLRADs when running with J-QUAD+.

4.2 Installation – modIOS

ModIOS is the DIS gateway COTS product that AWSIM interfaced with in order to communicate with other DIS Federation models. After installing the modIOS software, add the following lines to “$IOS_HOME/iossetup.csh” file, where $IOS_HOME is the installation directory:

switch (`uname -n`)

case host1:

setenv MODIOS_KEY d:AJKEWkGPdpSGg:255:032:07311998

breaksw

case host2:

setenv MODIOS_KEY d:BJKEWkGPdpSGg:255:032:07311998

breaksw

:

:

case hostn:

setenv MODIOS_KEY d:CJKEWkGPdpSGg:255:032:07311998

breaksw

Demo key

default

setenv MODIOS_KEY d:CJKEWkGPdpSGg:255:032:07311998

breaksw

endsw
The environment variable MODIOS_KEY defines the host dependent license key for the NIU. Refer to the “$IO_HOME/README” for more information on obtaining license keys. Also, in the “$IOS_HOME/iossetup.csh” file, replace the following lines:

setenv XBMLANGPATH

$IOS_HOME/iosExcon/Bitmaps/%B

setenv XUSERFILESEARCHPATH
$IOS_HOME/iosExcon/Resources

with:

if ($?XBMLANGPATH) then

 setenv XBMLANGPATH \

$IOS_HOME/iosExcon/Bitmaps/%B:${XBMLANGPATH}

else

 setenv XBMLANGPATH $IOS_HOME/iosExcon/Bitmaps/%B

endif

if ($?XUSERFILESEARCHPATH) then

 setenv XUSERFILESEARCHPATH \

$IOS_HOME/iosExconResources:${XUSERFILESEARCHPATH}

else

 setenv XUSERFILESEARCHPATH $IOS_HOME/iosExcon/Resources

endif

In the “$HOME/.login” file for the System Controller, where $HOME is the home or login directory, add the following lines:

setenv IOS_HOME /awsim1/modIOS2.0b

if (-d $IOS_HOME) then

source $IOS_HOME/iossetup.csh

endif

source $HOME/.ncrc

where “/awsim1/modIOS2.0b” is the installation directory for the modIOS software. The “$HOME/.ncrc” file should be copied from the “$HOME/rungame/ncrc_A.B.C.D.E” file, where A.B.C.D.E is the current build number. A copy of the “$HOME/.ncrc” file is included at the end of this document. Most of the environment variables in this file have defaults in the NIU Client program. The exception is RUI_RECEIVE, which defines the TCP/IP port number used to connect the NIU Client with the EI. The port number should match the port number defined by the NET_ATU_RECEIVE environment variable for the EI. Another EI environment variable to configure is S_HOST, which indicates to the EI the DIS Interface host.

Another important environment variable in the “$HOME/.ncrc” file is RIU_LOG, which is the pathname of the NIU Clients' log file. The default is “RIU.log”. Though not required, it is suggested that the log file be on a disk local to the DIS Interface host.

“$IOS_HOME/iosNiu/niu.cfg' contains parameters used to configure the NIU. Appendix A of the “$IOS_HOME/docs/ NIU_UserGuide.pdf” document lists all of the parameters in the file. Since Acrobat 3.0 is required to read this file, refer to the “$IOS_HOME/README” file for more details on obtaining this product. Below is a subset of these parameters should be set based on the configuration of each site. First, the network parameters to be configured are:

SEND_PORT -
Network port number for the outbound DIS PDUs

SEND_ADDR -
Network IP address for the outbound DIS PDUs. Usually the last two fields of the address are '255.255', which is a broadcast address.

RECV_PORT -
Network port number to receive the DIS PDUs.

RECV_ADDR -
Network IP address for the inbound DIS PDUs. Usually this is set to '0.0.0.0', which means receive everyone's PDUs.

Then add the following line to the section in the “niu.cfg” file, which lists DIS entity enumerations preceded by ASCII string:

AWSIM_Entity
KIND_PLATFORM,PLATFORM_DOMAIN_AIR,225,1,3,0,0

Also, in the section of the “niu.cfg” file which lists the DIS Force Id's, add the following two lines:

FORCE_ID_OTHER
0

FORCE_ID_NEUTRAL
3

Finally, other parameters of interest are:

EXERCISE_ID -
Exercise ID number.

EXERCISE_ID_FILTER -
Ignore all PDUs that do not match this value. Usually this number matches the EXERCISE_ID parameter.

SITE_ID -
Usually this is the third number in your host's IP address.

APP_ID_BASE -
Base Application ID for the NIU Client; usually this the fourth number of the IP address of the DIS Interface host

MAX_NUMBER_OF_OBJECTS -
Maximum number of both local and ghosted objects (or DIS entities) the NIU can maintain at any given instant of time.

NIU_HASH_NUMBER -
Used in the management of the NIU object table. This should be set to the largest prime number less than MAX_NUMBER_OF_OBJECTS.

NIU_SHM_SIZE -
The size of the shared memory segment between the NIU and client applications. When changing the MAX_NUMBER_OF_OBJECTS parameter, if the segment is not large enough, the NIU will print the recommended shared memory segment size and exit.

NIU_SHM_KEY -
Number for the shared memory segment between the NIU and NIU Client. This number must match the NIU_SHM_KEY' environment variable defined in the “.ncrc” file.

Please refer to the “niu.cfg” file in the build distribution for example.

5 AWSIM User Interface Changes

To run the AWSIM DIS Interface, invoke the “$HOME/rungame/dis_menu” script; the following menu is displayed:

 DIS Interface Menu

1) Start DIS NIU & Client (sdi)

2) Start DIS Monitor (sdm)

3) Kill DIS NIU & Client (kdi)

4) Kill DIS Monitor (kdm)

5) Other commands (o)

6) List Active DIS Jobs (l)

7) Quit Menu (q)

(Select by number or by abbreviation.) CMD?

At the menu prompt in this script, enter 'sdi' or '1' before starting the EI. An iconified window pops up for the NIU process. Then the NIU Client window pops up with the following message:

DIS Interface Version: 2.1.4
Date: 06/06/1998 10:17

***** nc_exec Version: 2.1.4 Date: 07/13/1998 13:15 1.1

RIU INTERPOLATION FREQUENCY = 1

EngagementMgrTask: IS ALIVE WITH Thread ID = 4

RESALocalTracksTask: IS ALIVE WITH Thread ID = 5

Ready to connect with the EI

Now start the EI and WG. When the EI has connected to the NIU Client the following message is displayed:

recvRAMP: IS ALIVE WITH Thread ID = 6

sendRAMPTask: IS ALIVE WITH Thread ID = 7

Now the DIS Interface is up and running. When the NIU Client is running, the following messages are printed every ten seconds:

riu: Continue

EngagementMgrTask: Continue

RESALocalTracks: Continue

These messages indicate that the 'Track Update', 'Engagement', and 'Main' tasks are cycling. Also, the following message is printed every time the EI updates the NIU:

setTimeOfDay: time = 41342.310000 sec

Note that all messages printed in the NIU Client window are also printed in its log file. If the NIU Client stop printing any of the ‘Continue’ messages, then kill the DIS Interface. To kill the DIS Interface processes, enter 'kdi' or '2' at the 'DIS Interface Menu' prompt. Note that the two DIS Interface processes can be started and killed without affecting EI or WG. To start the DIS Interface processes when the EI is running, enter 'sdi' at the 'DIS Interface Menu' prompt, first disconnect the EI from the DIS Interface via the 'External Interfaces Controller' by selecting:

2. Translator Commands

5. TCP/IP Services

3. Disconnect from DIS

y

y

2. Connect to DIS

<RETURN>

y

y

To start the DIS Monitor, enter 'sdm' at the menu prompt. Likewise, to stop the DIS Monitor, enter 'kdm' at the menu prompt, or select the 'File->Quit' menu item. The DIS Monitor can be started and stopped independent of the other DIS interface programs.

6 AWSIM Database Schema Changes

6.1 No changes

7 AWSIM CTAPS Interface (ACI)

7.1 System Overview

ACI provides an interface between the Contingency Theater Automated Planning System (CTAPS), version 5.2.2 and the Air Warfare Simulation (AWSIM) 2.0 constructive simulation. ACI provides the following functions:

Database correlation between the CTAPS Air Battle Plan (ABP) and the AWSIM Scenario Database: ACI provides the capabilities to map, validate and report of the condition of the correlation between the CTAPS ABP and AWSIM scenario databases. Correlation services are provided for airbases, aircraft, tasking units (squadrons), stores/weapons, target types, and mission types. This functionality is mainly used during pre-simulation activities to ensure that the scenario database built in AWSIM is properly prepared for the upcoming exercise. This functionality is also used during the exercise each time a new ABP is generated, to verify how correlated each new CTAPS ABP is with the AWSIM scenario database.

Airspace correlation and processing: ACI extracts Airspace Control Measures (ACM) from the CTAPS APS database and translates them to AWSIM2 recognized airspace. Automatic translation occurs for non-ambiguous airspace types (two-point AA and single-point CAP) and shapes (LINE, LLTR, POINT, POLY_ARC and TRACK). For ambiguous airspace types (multi-point AA, multi-point CAP) and shapes (C2, EC, OTHER), a Human Machine Interface (HMI) is provided for an operator to select the type of airspace translation.

Air Tasking Order Confirmation (ATOCONF) processing: ACI processes the ATOCONF from CTAPS. The ATOCONF is parsed, converted, and correlated so that AWSIM2 compliant mission orders are generated. An HMI is provided to allow operators to review and edit if necessary any of the generated mission files. A mission launcher is provided to insert the files into the AWSIM2 Orders Entry.

C4I information feedback: ACI provides feedback to CTAPS on tasked missions in two manners - database updates which simulate Mission Status updates normally performed by Wing level personnel and generation of USMTF MISREPS, ABSTATS, and OPREPS.

Human-Machine Interface (HMI): It has been updated to tie together all of the functions of the ACI system and allows the operator to use and observe the functioning of all of the background ACI processes.

7.2 Software Enhancements

The changes in the version 2.1.1 are related to problems discovered with the 2.1.0 version that was used at UFL98, and FD98 as well as some fixes and enhancements from the use of ATI at EFX98. These corrections are listed below.

The following issues have been closed in this release of ACI.

AFAMS
ID
Short Title
Executive Summary

4114
ATO Mapping needs to be retrofitted.
The previous version made the assumption that the ATO id was related to the ABP id. It now will accept any ABP, ATO combination. This was fixed at UFL98. Also performance problems were corrected related to the ATO that was being parsed. Previously it was parsing a concatenated ATO file that was much larger than the ATO should have been parsed.

317,3873,3925,4143
Mission Launcher problems and mission feedback from AWSIM
Work related to these CR/DR’s has been implemented in the Mission Launcher and the Mission Editor. The Auxterm (used to display air terminals) has been modified to allow two way data flow. Now both the Mission Launcher and Mission Editor can tell immediately when the game accepts an order stack. The status for that mission will be set appropriately.

4115
Abp_export was not reporting error status
Abp_export would report a successful exit status regardless of whether it was able to export assets from CTAPS. This allowed the user to continue through processing steps instead of reporting an error and exiting accordingly.

4141
ETD_calc problems
Not all of this CR applies to ACI.

ETD_calc will not recognize the AT command in the SCRAMBLE line of an order stack. This creates more reliable ETD’s. Additionally, performance increases were made to ETD_calc that has reduced its processing time by 75% when processing an entire ATO.

3870
Unsaved missions sent into the game
Previously the Mission Editor would allow the user to send an unsaved order stack into the game and then move on to another mission. This created a discrepancy between the mission that was saved on the disk and what was flying in the game. It was requested that the user be forced to save the mission before being allowed to check or save an order file.

N/A
Attack line putting MLN instead of BE
At UFL98 it was requested that all target identifiers be written out as a BE #. A command line option has been added that allows the ACI order writer to selectively write all target identifiers as BE #’s or as detected from the ATOCONF.

N/A
Mission Editors out of memory
While testing against large ATO’s from UFL98 the mission editors were running out of memory. This has been corrected by adding more memory management routines.

7.3 Possible problems and known errors:

1. The Mission Update X-Windows terminal window sometimes disappears when the database connection to CTAPS is dropped suddenly.

2. The Mission Editor cannot display an ATO larger than 1.5MB.

3. When using wing-level tasking, Order Writer will generate a LAUNCH command for a wing at a particular airbase. If another wing is present at the same base, it is not known which wing will actually be tasked, since the AWSIM simulation determines how best to carry out the LAUNCH command with the same AWSIM aircraft type.

4. When the Mission Editor submits a mission containing a cruise missile launch command, the Mission Monitor will not update the status display for that mission.

5. For C2IPS airlift missions: The C2IPS-to-CTAPS interface generates a consistent and unique USMTF field format in the MSNLOC set, field #3 (Mission Location Name). ACI detects the C2IPS airlift missions based upon the format of that field. Analysis of ATOCONF messages has shown that, in the case of C2IPS airlift tasking, the USMTF set TASKUNIT, field #2 (TASKED UNIT LOCATION) does not correspond with the MSNLOC Mission Location Name field. Therefore, ACI ignores tasked unit location for C2IPS airlift missions.

A side effect of this algorithm is that C2IPS units are handled using a 2-part key: unit designator and aircraft type. This means that a C2IPS unit designator / aircraft type combination, if chosen to be ignored by the controller during mapping, will effectively ignore all instances of that combination regardless of location.

6. Starting a Mission Editor on Solaris 2.5.1 with only Openwindows installed (i.e. no CDE) will cause the mission monitor window to display blank. Resize the window and the data will appear. Thereafter, the window functions normally.

7.4 Interface Compatibility

The ACI HMI is no longer accessible through an Internet browser. Instead, it is its own standalone application. The interfaces to CTAPS and the AWSIM simulation have remained unchanged.

ACI with an old database schema you must type the following commands:

$ sqlplus aci/aci@aci

SQL> alter table exer_defaults add (be_only varchar2(1));

SQL> quit
8 Notes

8.1 “.ncrc” file

This file should be placed in the home directory of the configured AWSIM account where AWSIM will be executed.

* --

This software was developed under USAF ESC/AXS PRISM Program --74

contracts F19628-92-C-0008 and F19628-92-C-0006, and ESC/DIB --

CCPL Program Contracts F19628-97-D-0011 and F19628-97-D-0012 --

and is subject to the restrictions defined in the file --

"COPYRIGHT.DOC". --

* --

NIU shared memory segment key. Refer to the 'NIU_SHM_KEY'

parameter in the '$IOS_HOME/iosNiu/niu.cfg' file for the

current value. The default if not defined is 500.

#setenv NIU_SHM_KEY 500

NIU client Application ID number. If zero, then NIU determines

client's the Application ID base on the slot its given when it

attaches to the NIU and the 'APP_ID_BASE' parameter in the

'$IOS_HOME/iosNiu/niu.cfg' file. The default if not defined

is 0.

#setenv NIU_CLIENT_NUM 0

Number of seconds of client inactivity (no NIU interactions)

before the NIU kills the client. A value of zero indicates

no timeout. The default if not defined is zero.

#setenv NIU_CLIENT_TIMEOUT 0

NIU client name; only the first 20 characters will be used.

The default if not defined is "AWSIM_Client".

#setenv NIU_CLIENT_NAME AWSIM_Client

Frequency of the Engagement and Track Updates in HZ. The

interval timer period for these threads is (1000000/RIU_INTERP_FRQ)

nanoseconds. The default if not defined is 1.

#setenv RIU_INTERP_FRQ 1

RIU error message log file. The default if not defined is

"RIU.log".

#setenv RIU_LOG RIU.log

Flag indicating whether or not to synchronize the RIU real

world clock (system clock) with the real world time specified

in the DIS Start PDU if received. No value is required; just

defining this environment variable sets the RIU SYNCH flag to

True. The RIU SYNCH flag defaults to False if not defined.

#setenv RIU_SYNCH

Number of minutes to wait in synchronizing the RIU real

world clock (system clock) to the real world time specified in

the Start PDU if received. If the wait time has expired, then

the RIU exits. The default if not set is 5.

#setenv RIU_MAX_WAIT 5

Flag indicating whether to set the RIU simulation time to the

simulation time specified in the DIS Start PDU if received or

at time zero. No value is required; just defining this

environment variable sets the RIU EX_TIME_0 flag to True. The

RIU EX_TIME_0 flag defaults to False if not defined.

#setenv RIU_EX_TIME_0

The Dead Reckoning Algorithm to use for all AWSIM DIS entities;

the valid range is 0 to 9. The default if not defined is 5.

#setenv RIU_DR_ALGORITHM 5

The maximum number of seconds to wait before sending the next

IFF PDU for an entity. If the IFF has changed for an entity,

the PDU is sent immediately. The default if not defined is 15.

#setenv RIU_IFF_TIMEOUT 15

TCP/IP port number to connect to the AWSIM ATU. This number

should be the same as the value for the 'NET_ATU_RECEIVE'

environment variable defined in the '.disrc' file. This

environment variable must be defined or the RIU will exit.

setenv RIU_RECEIVE 8714

Sites and applications to ignore. The format is:

site1:app1 site2:app2 ...

The default is no filtering.

#setenv RIU_ID_FILTER

Uncomment the following for Bourne and Korn shells.

#NIU_SHM_KEY=500

#NIU_CLIENT_NUM=0

#NIU_CLIENT_TIMEOUT=30

#NIU_CLIENT_NAME=AWSIM_Client

#RIU_LOG=RIU.log

#RIU_SYNCH=

#RIU_MAX_WAIT=5

#RIU_EX_TIME_0=

#RIU_DR_ALGORITHM=5

#RIU_RECEIVE+8714

#export NIU_SHM_KEY NIU_CLIENT_NUM NIU_CLIENT_TIMEOUT NIU_CLIENT_NAME

#export RIU_LOG RIU_SYNCH RIU_MAX_WAIT RIU_EX_TIME_0 RIU_DR_ALGORITHM

#export RIU_RECEIVE

8.2 DIS Monitor Help

NAME

 dm_exec

SYNOPSIS

 dm_exec [-appId number] [-help] [-NIUExec string]

 [-NIUClientExec string] [-shm key] [-statusCmd string]

 [-update msecs] [-usage] [-v] [-version] [-visible number]

 [Xtoolkitoptions]

DESCRIPTION

'dm_exec' is executable filename for the DIS Monitor, which obtains all of the known entities in the AWSIM DIS Interface and puts their respective Entity ID, Force ID, Entity Marking into a list. This list is sortable and searchable by either the Entity ID or Entity Marking text.

By default, the DIS Monitor will attempt to attach to the NIU if it is running; this is indicated when NIU Status label is green. If the NIU is not running, the NIU Status label is red. The button to the left of the NIU Status label is the Attach/Detach button. If the DIS Monitor is not attached to the NIU, then the 'Attach' label is shown, indicating that when the button is pressed, the DIS Monitor will attach itself to the NIU. Then, this button label is changed to 'Detach', whereby pressing the button will cause the DIS Monitor to detach itself from the NIU. Note that this button is disabled when the NIU is not running.

OPTIONS

 -appId number

'number' is the Application ID; the default is zero, which causes the NIU to set the Application ID base on the client slot returned from 'NIU_Attach' function and the 'APP_ID_BASE' parameter in the '$IOS_HOME/iosNiu/niu.cfg' file.

 -help

Print information about the command line options and program resources.

 -NIUExec string

'string' is the NIU executable name. This option is related the '-statusCmd' in that this name must match the string produced by shell command used to status the NIU process. The default is "NIU".

 -NIUClientExec string

'string' is the AWSIM NIU Client executable name. This option is related the '-statusCmd' in that this name must match the string produced by shell command used to status the NIU process. The default is "nc_exec".

 -shm key

'key' is the shared memory key used to attach to the NIU; the default is 500. This value must match the 'NIU_SHM_KEY' parameter in the '$IOS_HOME/iosNiu/niu.cfg' file.

 -statusCmd string

'string' is the shell command invoked by the 'popen(3s)' function which is used in determining the whether or not the AWSIM DIS Interface processes are running. The default is:

 "/usr/bin/ps -e | grep %s | awk '{print $4}'"

where '%s' is substituted with the appropriate executable name.

 -update msecs

Update the Entity List every 'msecs' milliseconds; the default is 5000.

 -usage

Print the command-line options only.

 -v

 -version

Print the version only.

 -visible number

'number' is the number of items to be visible in the Entity List window; the default is 20. This option overrides the '*EntityList.visibleItemCount' resource.

 Xtoolkitoptions

Refer to the 'X Toolkit Intrinsics Programming Manual', Volume Four of 'The Definitive Guides to the X Window System' published by O'Reilly & Associates for more information on 'Xtoolkitoptions'.

RESOURCES

 appID

Specifies the Application ID; the default is zero, which causes the NIU to set the Application ID base on the client slot returned from 'NIU_Attach' function and the 'APP_ID_BASE' parameter in the '$IOS_HOME/iosNiu/niu.cfg' file.

 appShmKey

Specifies the shared memory key used to attach to the NIU; the default is 50. This value must match the 'NIU_SHM_KEY' parameter in the '$IOS_HOME/iosNiu/niu.cfg' file.

 entityListUpdate

Specifies the update period of the Entity List in milliseconds; the default is 5000.

 NIUExec

Specifies the NIU executable name. This option is related the '-statusCmd' in that this name must match the string produced by shell command used to status the NIU process. The default is "NIU".

 NIUClientExec

Specifies the AWSIM NIU Client executable name. This option is related the '-statusCmd' in that this name must match the string produced by shell command used to status the NIU process. The default is "nc_exec".

 statusCommand string

Specifies the shell command invoked by the 'popen(3s)' function which is used in determining the whether or not the AWSIM DIS Interface processes are running. The default is:

 "/usr/bin/ps -e | grep %s | awk '{print $4}'"

where '%s' is substituted with the appropriate executable name.

SEE ALSO

 awk(1), grep(1), popen(3s), ps(1)

9 DETAILED VERSION DESCRIPTION

9.1 AFAMS DRs/CRs

3897
BTS #98078-14 SCUD TBM/Cruise

The RIU only allows certain categories of assets to be passed from STAGE to AWSIM. These categories are listed at the top of the DIS_GHOSTS file. There is no category for TBM. As such, the SCUDs being generated in STAGE are being sent across as cruise missiles. The patriot sites now (w/AWSIM 2.0) are able to change targeting mode from air breathers to TBM or both. In TBM mode, they will shoot 2 at a TBM until the engagement is over. IN air mode, they only shoot 1 missile. Since the SCUDs are coming across the interface as cruise missiles, they must be targeted as air breathers.

Solution:
The AWSIM_ENTITIES and DIS_GHOSTS files were combined into AWSIM_DIS_ENTITIES. In this new file, a new category number, '9', was added so that incoming DIS TBMs are categorized as TBMs in AWSIM. Used in EFX98. Note that STAGE is no longer required for the AWSIM DIS Interface.

10 Development Changes Related to DIS Interface

Following changes were made at EFX98 Spiral 3 to the developmental version 2.1.5.0.beta. They are included in version 2.1.5.1 as production changes.

· Auto-attach causing problems

Removed auto-attach, added the NUI Status Label, NUI Client Status Label, and a manual attach/detach button on DIS Monitor.

· Game crashes with AWSIM-to-AWSIM Engagement via DIS interface

Fixed AWSIM internal engagement problem.

· Multiple Aircraft Turning Problems

Aircraft will not do a 360 degrees turn when its heading changed from 0 degrees to 360 degrees; all heading change are limited between -180 degrees and 180 degrees.

· Add auto request of fire_control when running ground model is J-QUAD+

Obtain fire_control automatically for J-QUAD+ configuration, since AWSIM always has fire control of the ALLRADs when running with J-QUAD+.
· Fix naming of DIS ghost objects
Process DIS Ghost names in accordance to the ALSP naming standard.

· Premature update of DIS entities

Added delays to prevent premature update of DIS entities before WG finishes DIS entities clean up after the DIS interface connection is bounced.

· Attacks on position processed as a bad target

Fixed logic so that an attack on position doesn’t cause ATU to reject the engagement as a bad target.
16
15
11/5/98

_959154937.vsd

